organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A cocrystal of (2*S*,3a*S*,4*R*,5*R*,7a*S*)- and (2*R*,3a*S*,4*R*,5*R*,7a*S*)-7-bromo-2-(4methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

Martin G. Banwell,* Okanya J. Kokas and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia Correspondence e-mail: mgb@rsc.anu.edu.au

Received 7 September 2007; accepted 25 September 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.030; wR factor = 0.076; data-to-parameter ratio = 14.4.

The title compounds, both $C_{14}H_{15}BrO_5$, cocrystallize and their structures, including absolute stereochemistries, have been solved simultaneously. The structures differ in the configuration (*R versus S*) at the acetal C atom bearing the 4-methoxyphenyl group.

Related literature

For related literature, see: Banwell *et al.* (2007*a*,*b*); Boyd *et al.* (1991); Hulme *et al.* (2005).

Experimental

Crystal data	
$C_{14}H_{15}BrO_5$	b = 9.7093 (5) Å
$M_r = 343.17$	c = 9.9373 (5) Å
Monoclinic, P2 ₁	$\beta = 95.689 \ (3)^{\circ}$
a = 7.2245 (4) Å	V = 693.62 (6) Å

Z = 2Mo $K\alpha$ radiation $\mu = 2.98 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: integration via Gaussian method (Coppens, 1970) implemented in *maXus* (Mackay *et al.*, 1999) $T_{\rm min} = 0.372, T_{\rm max} = 0.586$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.076$ S = 0.993108 reflections 216 parameters 35 restraints H atoms treated by a m

H atoms treated by a mixture of independent and constrained refinement

 $\begin{array}{l} T = 200 \ \mathrm{K} \\ 0.40 \times 0.29 \times 0.26 \ \mathrm{mm} \end{array}$

12613 measured reflections 3108 independent reflections 2802 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.90 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ {\rm with \ 1430 \ Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.019 \ (10)} \end{array}$

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEPII* (Johnson, 1976) in *TEXSAN* (Molecular Structure Corporation, 1997); software used to prepare material for publication: *CRYS-TALS*.

The authors thank the Australian Research Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2294).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Banwell, M. G., Kokas, O. J. & Willis, A. C. (2007a). Org. Lett. 9, 3503-3506.
- Banwell, M. G., Kokas, O. J. & Willis, A. C. (2007b). Acta Cryst. E63, 03820.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Boyd, D. R., Dorrity, M. R. J., Hand, M. V., Malone, J. F., Sharma, N. D., Dalton, H., Gray, D. J. & Sheldrake, G. N. (1991). J. Am. Chem. Soc. 113, 666–667.
- Coppens, P. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hulme, A., Compton, T., Parsons, S. & Messenger, D. (2005). Private communication (refcode NASZAJ). CCDC, Union Road, Cambridge, England.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.
- Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, The Woodlands, Texas, USA.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Acta Cryst. (2007). E63, o4187 [doi:10.1107/S1600536807046995]

A cocrystal of (2S,3aS,4R,5R,7aS)- and (2R,3aS,4R,5R,7aS)-7-bromo-2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

M. G. Banwell, O. J. Kokas and A. C. Willis

Comment

During the course of establishing a total synthesis of the non-natural enantiomeric form of the montanine alkaloid brunsvigine (Banwell *et al.*, 2007*a*) we had occasion to convert (1*S*,2*S*)-3-bromo-3,5-cyclohexadiene-1,2-diol (I) (Boyd *et al.*, 1991) into the corresponding 4-methoxybenzylidene acetal (II). This was achieved under standard conditions and provided compound (II) as a *ca* 5:3 mixture of epimers arising from a variation in stereochemistry at the newly installed acetal carbon. Subjection of this mixture to *cis*-dihydroxylation under the so-called UpJohn conditions resulted in each epimer reacting exclusively at the non-halogenated double bond and in a diastereofacially selective manner to give the corresponding mixture of *cis*-diols (III) and (IV) as a solid after recrystallization from ethyl acetate. In order to establish the relative stereochemistries within these two compounds a single-crystal X-ray analysis was undertaken. The present structures represent only the third and fourth reported for a 4-methoxyphenylacetal derivative of a *cis*-cyclohexane-1,2-diol (Banwell *et al.*, 2007*b*; Hulme *et al.*, 2005).

The crystallographic asymmetric unit consists of one molecule of $C_{14}H_{15}BrO_5$, but with some atoms disordered. The disordered atoms appear to indicate that two isomers have co-crystallized, with the atoms that are not disordered being common to both. The major epimer includes sites O18 and C10 to C19 (crystallographic labelling), and the minor epimer includes O118 and C110 to C119. The structures vary in configuration (*R versus S*) at the acetal carbon bearing the 4-meth-oxyphenyl group. The minor isomer atom sites have been refined with isotropic displacement parameters set equal to U_{eq} of the closest site of the major epimer. Restraints were applied to distances and angles of the minor sites so they would tend to match the corresponding values in the major epimer and so O118 and C110 to C117 would tend to be coplanar. The relative occupancies of the two isomers were refined.

The compounds are enantiomerically pure and their absolute configurations have been determined by refinement of the Flack parameter. The outcomes of these determinations are in agreement with those predicted on the basis of the absolute configuration of the precursor (I) (Boyd *et al.*, 1991).

The largest peaks in the final difference electron-density map are located near the Br atom and at the juncture between disordered and ordered parts of the structure(*s*).

Experimental

A magnetically stirred suspension of (1S,2S)-3-bromo-3,5-cyclohexadiene-1,2-diol (I) (20.0 g, 104.7 mmol) and 4-methoxybenzaldehyde dimethyl acetal (20.9 ml, 115.2 mmol) in anhydrous dichloromethane (200 ml) was cooled to 253 K then (1S)-(+)-camphor-10-sulfonic acid monohydrate (2.4 g, 10.4 mmol) was added. After 1 h the reaction mixture was quenched with sodium hydroxide (200 ml of a 1 *M* aqueous solution) and the separated aqueous phase extracted with dichloromethane $(2 \times 100 \text{ ml})$. The combined organic phases were washed with brine (1 × 100 ml) then dried (MgSO₄), filtered and concentrated under reduced pressure to give a white solid assumed to contain an epimeric mixture of the benzylidene acetals (II). A

magnetically stirred solution of this material in acetone/water (300 ml of a 2:1 v/v mixture) was cooled to 273 K then treated with N-methylmorpholine N-oxide (27.1 g, 232 mmol) and osmium tetraoxide (7.0 ml of a 2.5% w/v solution in tert-butanol, 0.53 mmol). The ensuing mixture was stirred at 291 K for 20 h then treated with sodium metabisulfite (200 ml of a 20% w/vaqueous solution). After 4 h the reaction mixture was concentrated under reduced pressure to give a brown residue that was treated with diethyl ether (500 ml) then water (500 ml). The separated aqueous phase was extracted with diethyl ether ($4 \times$ 150 ml) and the combined organic fractions were then dried (MgSO₄), filtered and concentrated under reduced pressure to give a brown solid. Subjection of this material to flash chromatography (silica, 1:19 v/v methanol/dichloromethane elution) and concentration of the appropriate fractions ($R_f = 0.3$) afforded a *ca*. 4:1 mixture of the title compounds (III) and (IV) (23.3 g, 65%) as a white, crystalline solid, m.p. = 406–407 K [Found: $(M - H^2)^+$, 384.0570. C, 48.67; H, 4.40; Br 23.42. $C_{14}H_{15}^{79}BrO_5$ requires $(M - H^2)^+$, 384.0572. C, 49.00; H, 4.41; Br 23.28%]. ¹H NMR [300 MHz, (CD₃)₂CO] δ (major epimer) 7.42 (2H, d, J = 8.9 Hz), 6.95 (2H, d, J = 8.9 Hz), 6.29 (1H, m), 5.80 (1H, s), 4.90 (1H, d, J = 5.1 Hz), 4.55 (1H, m), 4.40 (3*H*, m), 4.25 (1*H*, m), 3.81 (3*H*, s); δ (minor epimer) 7.37 (2*H*, d, J = 8.7 Hz), 6.93 (2*H*, d, J = 8.7 Hz), 6.17 (1*H*, dd, J = 2.7 and 1.2 Hz), 5.87 (1H, s), 4.69 (1H, dd, J = 6.0 and 1.2 Hz), 4.51 (1H, t, J = 4.8 Hz), 4.42 (3H, m), 4.31 (1H, m), 3.80 (3*H*, s); ¹³C NMR [75 MHz, (CD₃)₂CO] δ (major epimer) 161.4, 135.6, 130.8, 129.0, 120.7, 114.3, 103.1, 77.9, 77.1, 69.6, 67.6, 55.5; δ (minor epimer) 161.5, 133.7, 130.3, 129.3, 122.2, 114.3, 104.7, 79.0, 77.9, 70.0, 68.0, 55.5; ν_{max} (NaCl)/cm⁻¹ 3518, 3392, 2954, 2907, 2834, 1615, 1515, 1390, 1304, 1248, 1170, 1074, 1050, 1030, 924; MS (EI, 70 eV) 343 and 341 $[(M - H^{-})^{+}, \text{both 5\%}]$, 172 (10), 153 (13), 135 (100), 108 (39), 77 (22), 65 (18), 39 (18).

Refinement

The alcohol hydrogen atoms were included at locations revealed in a difference electron density map and were then refined positionally. Other hydrogen atoms were added at calculated positions (C—H distance 1.0 Å, $U_{iso}(H) = 1.2 \times U_{eq}(C)$) and, during refinement, each was set to ride on the carbon atom to which it is attached.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot of the major isomer of $C_{14}H_{15}BrO_5$ with labelling of selected atoms. Ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Fig. 2. Anisotropic displacement ellipsoid plot of the minor isomer of $C_{14}H_{15}BrO_5$ with labelling of selected atoms. Ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Fig. 3. Unit cell packing diagram of $C_{14}H_{15}BrO_5$ projected down the *b* axis. Hydrogen atoms of the alcohol groups are drawn as circles with small radii and the others have been deleted.

Fig. 4. The structure of (I)–(IV).

Cocrystal of (2*S*,3a*S*,4*R*,5*R*,7a*S*)- and (2*R*,3a*S*,4*R*,5*R*,7a*S*)-7-bromo- 2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

Crystal data	
C ₁₄ H ₁₅ BrO ₅	$F_{000} = 348$
$M_r = 343.17$	$D_{\rm x} = 1.643 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 30770 reflections
a = 7.2245 (4) Å	$\theta = 2.6 - 27.5^{\circ}$
<i>b</i> = 9.7093 (5) Å	$\mu = 2.98 \text{ mm}^{-1}$
<i>c</i> = 9.9373 (5) Å	T = 200 K
$\beta = 95.689 \ (3)^{\circ}$	Block, colourless
$V = 693.62 (6) \text{ Å}^3$	$0.40\times0.29\times0.26\ mm$
<i>Z</i> = 2	

Data collection

Nonius KappaCCD area-detector diffractometer	2802 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 200 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans with CCD	$\theta_{\min} = 3.5^{\circ}$
Absorption correction: integration via Gaussian method (Coppens, 1970) implemented in maXus (Mackay <i>et al.</i> , 1999)	$h = -9 \rightarrow 9$
$T_{\min} = 0.372, \ T_{\max} = 0.586$	$k = -12 \rightarrow 11$
12613 measured reflections	$l = -12 \rightarrow 12$
3108 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.030$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.038P)^2 + 0.097P],$ where $P = [\max(F_0^2, 0) + 2F_c^2]/3$
$wR(F^2) = 0.076$	$(\Delta/\sigma)_{\text{max}} = 0.043$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$

3108 reflections	$\Delta \rho_{\rm min} = -0.90 \ e \ {\rm \AA}^{-3}$
216 parameters	Extinction correction: none
35 restraints	Absolute structure: Flack (1983), with 1430 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.019 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Br20	0.43964 (4)	0.3005 (3)	0.34759 (3)	0.0547	
07	1.0479 (3)	0.0958 (4)	0.5926 (3)	0.0594	
08	1.0545 (3)	0.3760 (4)	0.5778 (2)	0.0476	
09	0.7101 (3)	0.3574 (4)	0.8155 (2)	0.0468	
011	0.4712 (3)	0.4076 (4)	0.65992 (19)	0.0444	
O18	0.0214 (4)	0.1796 (4)	1.1172 (3)	0.0562	0.853 (4)
O118	0.0317 (17)	0.3946 (16)	1.1645 (12)	0.0555*	0.147 (4)
C1	0.8881 (4)	0.1684 (4)	0.6274 (3)	0.0414	
C2	0.9556 (3)	0.3090 (5)	0.6760 (2)	0.0382	
C3	0.7968 (4)	0.4054 (4)	0.7008 (3)	0.0406	
C4	0.6353 (4)	0.4100 (4)	0.5872 (3)	0.0367	
C5	0.6293 (3)	0.2884 (5)	0.4953 (2)	0.0374	
C6	0.7390 (4)	0.1786 (4)	0.5112 (3)	0.0397	
C10	0.5344 (5)	0.4276 (5)	0.7997 (3)	0.0398	0.853 (4)
C12	0.4022 (5)	0.3619 (5)	0.8875 (4)	0.0373	0.853 (4)
C13	0.3774 (6)	0.2201 (5)	0.8878 (4)	0.0411	0.853 (4)
C14	0.2495 (6)	0.1620 (5)	0.9669 (5)	0.0473	0.853 (4)
C15	0.1463 (6)	0.2471 (6)	1.0447 (4)	0.0408	0.853 (4)
C16	0.1678 (6)	0.3889 (6)	1.0432 (4)	0.0428	0.853 (4)
C17	0.2976 (6)	0.4437 (6)	0.9649 (4)	0.0411	0.853 (4)
C19	-0.1055 (9)	0.2620 (8)	1.1849 (5)	0.0683	0.853 (4)
C110	0.5244 (13)	0.3003 (17)	0.7692 (10)	0.0396*	0.147 (4)
C112	0.3909 (16)	0.3102 (19)	0.8776 (12)	0.0380*	0.147 (4)
C113	0.294 (2)	0.1981 (19)	0.9244 (16)	0.0469*	0.147 (4)
C114	0.170 (2)	0.219 (2)	1.0228 (16)	0.0414*	0.147 (4)
C115	0.1473 (18)	0.3534 (17)	1.0695 (13)	0.0433*	0.147 (4)
C116	0.246 (2)	0.4612 (17)	1.0201 (15)	0.0403*	0.147 (4)
C117	0.3638 (19)	0.4373 (19)	0.9260 (15)	0.0403*	0.147 (4)
C119	-0.089 (6)	0.292 (4)	1.213 (4)	0.0688*	0.147 (4)
H1	1.006 (7)	0.035 (5)	0.542 (4)	0.0710*	
H2	1.135 (6)	0.342 (4)	0.579 (4)	0.0570*	
H11	0.8363	0.1192	0.7038	0.0491*	
H21	1.0394	0.2984	0.7617	0.0455*	
H31	0.8463	0.5005	0.7188	0.0484*	
H41	0.6399	0.4972	0.5341	0.0439*	
H61	0.7221	0.1014	0.4445	0.0471*	
H101	0.5503	0.5278	0.8211	0.0473*	0.853
H131	0.4513	0.1600	0.8314	0.0489*	0.853
H141	0.2315	0.0599	0.9680	0.0562*	0.853

H161	0.0915	0.4498	1.0971	0.0512*	0.853
H171	0.3164	0.5458	0.9643	0.0492*	0.853
H191	-0.1880	0.2006	1.2334	0.0835*	0.853
H192	-0.0340	0.3240	1.2515	0.0835*	0.853
H193	-0.1832	0.3188	1.1169	0.0835*	0.853
H1101	0.5314	0.2051	0.7316	0.0475*	0.147
H1131	0.312	0.1036	0.8881	0.0563*	0.147
H1141	0.099	0.141	1.0585	0.0497*	0.147
H1161	0.229	0.5569	1.0541	0.0484*	0.147
H1171	0.4335	0.5165	0.8911	0.0484*	0.147
H1191	-0.165	0.335	1.281	0.0826*	0.147
H1192	-0.012	0.215	1.256	0.0826*	0.147
H1193	-0.173	0.255	1.135	0.0826*	0.147

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br20	0.04465 (15)	0.06961 (18)	0.04579 (15)	0.00756 (18)	-0.01518 (10)	-0.00620 (18)
07	0.0408 (12)	0.0565 (13)	0.0777 (17)	0.0121 (10)	-0.0104 (11)	-0.0169 (12)
08	0.0301 (10)	0.0530 (13)	0.0602 (14)	0.0004 (9)	0.0068 (10)	0.0097 (10)
09	0.0317 (9)	0.0736 (13)	0.0343 (9)	0.0055 (8)	-0.0015 (8)	-0.0005 (8)
011	0.0299 (9)	0.0683 (13)	0.0347 (10)	0.0063 (9)	0.0009 (7)	0.0002 (9)
O18	0.0533 (15)	0.0628 (17)	0.0538 (16)	-0.0029 (13)	0.0123 (13)	0.0109 (13)
C1	0.0332 (13)	0.0424 (14)	0.0471 (16)	0.0012 (11)	-0.0029 (12)	0.0044 (11)
C2	0.0278 (10)	0.0473 (13)	0.0386 (11)	-0.0018 (15)	-0.0018 (8)	0.0010 (16)
C3	0.0319 (13)	0.0486 (14)	0.0404 (14)	0.0008 (11)	-0.0013 (11)	-0.0020 (12)
C4	0.0302 (12)	0.0443 (13)	0.0354 (13)	0.0025 (10)	0.0014 (10)	0.0007 (11)
C5	0.0306 (10)	0.0466 (15)	0.0341 (10)	-0.0029 (13)	-0.0010 (8)	-0.0003 (14)
C6	0.0348 (13)	0.0428 (14)	0.0401 (14)	-0.0020 (11)	-0.0021 (11)	-0.0018 (11)
C10	0.0344 (16)	0.0482 (18)	0.0357 (16)	0.0023 (13)	-0.0025 (13)	-0.0012 (13)
C12	0.0325 (17)	0.045 (2)	0.0333 (17)	0.0037 (15)	-0.0030 (14)	0.0001 (16)
C13	0.036 (2)	0.044 (2)	0.042 (2)	0.0050 (16)	-0.0012 (17)	-0.0032 (16)
C14	0.043 (2)	0.049 (2)	0.048 (2)	0.0008 (17)	-0.0018 (17)	0.0051 (17)
C15	0.0352 (17)	0.053 (3)	0.0336 (18)	-0.0010 (15)	-0.0010 (14)	0.0048 (15)
C16	0.042 (2)	0.049 (2)	0.0373 (19)	-0.0002 (17)	0.0013 (15)	-0.0054 (15)
C17	0.039 (2)	0.045 (2)	0.038 (2)	0.0009 (14)	0.0008 (16)	-0.0036 (15)
C19	0.066 (3)	0.086 (4)	0.057 (3)	-0.011 (2)	0.027 (3)	-0.005 (2)

Geometric parameters (Å, °)

Br20—C5	1.910 (2)	C12—C13	1.388 (5)
O7—C1	1.424 (3)	C12—C17	1.382 (6)
O7—H1	0.82 (5)	C13—C14	1.391 (6)
O8—C2	1.422 (4)	C13—H131	1.000
O8—H2	0.67 (4)	C14—C15	1.397 (6)
O9—C3	1.432 (4)	C14—H141	1.000
O9—C10	1.436 (4)	C15—C16	1.385 (6)
O9—C110	1.482 (11)	C16—C17	1.384 (7)
O11—C4	1.449 (3)	C16—H161	1.000

O11—C10	1.432 (4)	C17—H171	1.000
O11—C110	1.527 (12)	C19—H191	1.000
O18—C15	1.376 (5)	С19—Н192	1.000
O18—C19	1.433 (7)	С19—Н193	1.000
O118—C115	1.380 (16)	C110—C112	1.518 (15)
O118—C119	1.434 (19)	C110—H1101	1.000
C1—C2	1.512 (5)	C112—C113	1.399 (17)
C1—C6	1.503 (4)	C112—C117	1.346 (17)
C1—H11	1.000	C113—C114	1.406 (17)
C2—C3	1.520 (4)	C113—H1131	1.000
C2—H21	1.000	C114—C115	1.397 (17)
C3—C4	1.542 (4)	C114—H1141	1.000
С3—Н31	1.000	C115—C116	1.382 (16)
C4—C5	1.490 (4)	C116—C117	1.347 (16)
C4—H41	1.000	C116—H1161	1.000
C5—C6	1.328 (4)	C117—H1171	1.000
С6—Н61	1.000	C119—H1191	1.000
C10—C12	1.498 (6)	C119—H1192	1.000
С10—Н101	1.000	C119—H1193	1.000
C1—O7—H1	104 (4)	C14—C13—H131	120.1
C2—O8—H2	105 (3)	C13—C14—C15	119.6 (4)
C3—O9—C10	102.1 (2)	C13—C14—H141	120.2
C3—O9—C110	109.2 (4)	C15—C14—H141	120.2
C4—O11—C10	106.5 (2)	C14—C15—O18	115.0 (4)
C4—O11—C110	101.9 (5)	C14—C15—C16	121.0 (5)
C15—O18—C19	117.6 (3)	O18—C15—C16	124.0 (4)
C115—O118—C119	117.1 (16)	C15—C16—C17	118.1 (5)
O7—C1—C2	106.3 (2)	C15—C16—H161	120.9
O7—C1—C6	112.5 (2)	C17—C16—H161	120.9
C2-C1-C6	111.7 (2)	C16—C17—C12	122.0 (4)
07—C1—H11	108.8	C16—C17—H171	119.0
C2—C1—H11	108.8	C12—C17—H171	119.0
C6—C1—H11	108.8	O18—C19—H191	109.5
C1 - C2 - 08	111 3 (2)	O18—C19—H192	109.5
C1 - C2 - C3	112.5 (2)	H191—C19—H192	109.5
08-02-03	105.5(3)	018-C19-H193	109.5
C1 - C2 - H21	109.1	H191_C19_H193	109.5
08-02-H21	109.1	H192_C19_H193	109.5
C_{3} C_{2} H_{21}	109.1	011 - 011 - 09	97.0.(8)
$C_{2} = C_{2} = C_{2} = C_{2}$	109.1 109.0(2)	011_0110_0112	109.2 (8)
$C_2 = C_3 = C_4$	105.0(2) 115.3(2)	09-0110-0112	109.2(8)
$C_2 = C_3 = C_4$	113.5(2) 103.5(2)	011 C110 H1101	112.0 (0)
$C_2 = C_3 = H_2 I$	109.5 (2)	$O_{1} = C_{110} = H_{1101}$	112.5
$C_2 = C_3 = H_3 I$	109.0	C_{112} C_{110} H_{1101}	112.0
$C_4 = C_2 = H_2 I$	109.0		112.3
$C_4 = C_5 = \Pi_5 I$	109.0	$C_{110} - C_{112} - C_{113}$	124.2(12)
$C_3 = C_4 = C_5$	103.4(2)	C112 - C112 - C117	110.9 (12)
$C_3 - C_4 - C_5$	113.3(2)		119.9 (11)
$\bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{j$	108.5 (2)	C112—C113—C114	119.5 (12)
C3—C4—H41	110.4	C112—C113—H1131	120.2

O11—C4—H41	110.4		C114—C113—H1131		120.3
C5—C4—H41	110.4		C113—C114—C115		118.1 (13)
Br20—C5—C4	113.4 (2)		C113—C114—H1141		121.0
Br20—C5—C6	121.0 (2)		C115—C114—H1141		121.0
C4—C5—C6	125.6 (2)		C114—C115—O118		126.5 (12)
C1—C6—C5	121.2 (2)		C114—C115—C116		120.5 (11)
C1—C6—H61	119.4		O118—C115—C116		113.0 (11)
С5—С6—Н61	119.4		C115—C116—C117		120.0 (12)
O9—C10—O11	103.6 (2)		C115-C116-H1161		120.0
O9—C10—C12	109.9 (3)		C117-C116-H1161		120.0
O11-C10-C12	110.3 (3)		C116—C117—C112		122.0 (12)
O9—C10—H101	110.9		C116—C117—H1171		119.0
O11-C10-H101	110.9		C112—C117—H1171		119.0
C12-C10-H101	110.9		O118-C119-H1191		109.4
C10-C12-C13	120.9 (4)		O118-C119-H1192		109.5
C10-C12-C17	119.6 (4)		O118-C119-H1193		109.5
C13—C12—C17	119.4 (5)		H1191—C119—H1192		109.5
C12—C13—C14	119.8 (5)		H1191—C119—H1193		109.5
C12—C13—H131	120.1		Н1192—С119—Н1193		109.5
C10—O9—C3—C2	-162.1 (3)		C2—C3—C4—C5		19.4 (4)
C10—O9—C3—C4	-38.9 (4)		O9—C3—C4—O11		17.8 (4)
C3—O9—C10—O11	46.4 (4)		O11-C4-C5-Br20		69.7 (3)
C3—O9—C10—C12	164.3 (3)		O11—C4—C5—C6		-109.0 (3)
C10—O11—C4—C3	10.3 (4)		C3—C4—C5—C6		5.3 (4)
C10-011-C4-C5	131.2 (3)		C3—C4—C5—Br20		-175.9 (2)
C4-011-C10-09	-35.0 (4)		Br20-C5-C6-C1		-179.8 (2)
C4-011-C10-C12	-152.7 (4)		C4—C5—C6—C1		-1.2 (5)
C19—O18—C15—C14	-172.0 (4)		O9—C10—C12—C13		-48.6 (5)
C19—O18—C15—C16	6.0 (6)		O9—C10—C12—C17		134.2 (4)
O7—C1—C2—C3	173.0 (2)		O11—C10—C12—C13		65.1 (5)
C6—C1—C2—O8	-68.3 (3)		O11—C10—C12—C17		-112.1 (4)
O7—C1—C2—O8	54.8 (3)		C10-C12-C13-C14		-177.9 (4)
C2—C1—C6—C5	-27.0 (4)		C17—C12—C13—C14		-0.7 (6)
C6—C1—C2—C3	49.9 (3)		C13—C12—C17—C16		-0.1 (6)
O7—C1—C6—C5	-146.4 (3)		C10—C12—C17—C16		177.2 (4)
C1—C2—C3—C4	-47.1 (4)		C12—C13—C14—C15		0.4 (6)
O8—C2—C3—O9	-169.8 (2)		C13—C14—C15—O18		178.9 (4)
O8—C2—C3—C4	74.3 (3)		C13—C14—C15—C16		0.7 (7)
C1—C2—C3—O9	68.7 (3)		C14—C15—C16—C17		-1.5 (6)
O9—C3—C4—C5	-99.6 (3)		O18—C15—C16—C17		-179.4 (4)
C2—C3—C4—O11	136.7 (3)		C15—C16—C17—C12		1.2 (6)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··
07—H1…O8 ⁱ		0.81 (4)	1.97 (5)	2,779 (5)	171 (5)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O7—H1⋯O8 ⁱ	0.81 (4)	1.97 (5)	2.779 (5)	171 (5)
O8—H2…O7	0.67 (4)	2.48 (4)	2.725 (5)	105 (4)
08—H2…O11 ⁱⁱ	0.67 (4)	2.56 (4)	3.055 (3)	133 (4)

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+1; (ii) *x*+1, *y*, *z*.

Fig. 1

Fig. 4

(II)

(IV) (minor)